Borotungstate Polyoxometalates: Multinuclear NMR Structural Characterization and Conversions in Solutions

Raisa I. Maksimovskaya* and Gennadii M. Maksimov

Boreskov Institute of Catalysis, Lavrentiev av. 5, Novosibirsk 630090, Russia

S Supporting Information

ABSTRACT: The unique heteropolyanion $\left[\text{H}_{3}\text{BW}_{13}\text{O}_{46}\right]^{8-}$ (BW_{13}) , previously suggested on the basis of indirect evidence, and protonated lacunary heteropolyanion $\text{[HBW}_{11}\text{O}_{39}\text{]}^{8-}$ $\text{(BW}_{11}\text{)}$ have been identified in aqueous solutions at pH $5-7.5$ from NMR spectra. The pattern of tungstentungsten connectivities based on the analysis of the $\frac{2}{18}V_{\text{W-O-W}}$ coupling satellites in the 183 W NMR spectrum of BW_{11} , containing six peaks of relative intensities ∼2:2:2:1:2:2, indicates that the latter is the α isomer. The ¹⁷O NMR spectrum confirms the protonated state of the polyanion with the proton delocalized on two out of four terminal O atoms surrounding the tungsten vacancy. The 183 W NMR spectrum of BW_{13} contains seven peaks of relative intensities ∼2:1:2:2:2:2:2 with additional large couplings due to the connectivity between BW_{11} and $[W_2O_7]^{2-}$ fragments. According to the the connectivity between BW_{11} and $[W_2O_7]^2$ ⁻ fragments. According to the ¹⁷O NMR spectrum, two protons of $[BW_{13}O_{46}H_3]^8$ ⁻ are delocalized on the

two terminal trans O atoms of the dimeric fragment while the third one is linked to its bridging O atom. The conversions of BW_{11} and BW₁₃ in solution were followed by using ¹⁸³W NMR spectra at a "fingerprint" level. In the pH range from ∼7.5 to 6, BW₁₁ transforms to BW₁₃, transforming further to $[BW_{12}O_{40}]^{5-}$ (BW_{12}) and $[B_3W_{39}O_{132}H_n]^{n-21}$ (B_3W_{39}) in different ratios. Conversion of BW_{13} to BW_{12} proceeds through an intermediate complex of suggested composition $[BW_{11}O_{39} \cdot WO_2]^{7}$. At high acidity (pH ∼ 0), B₃W₃₉ gradually decomposes into tungstic acid, BW₁₂ and H₃BO₃. Polyanion BW₁₂ persists in the pH range $~\sim$ 0 $-7.5.$

INTRODUCTION

Tungsten heteropolyanions are an important class of inorganic metal-oxygen clusters, polyoxometalates, that are widely used in catalysis, analytical chemistry, and medicine. $1-3$ Among the non-metal central atoms of tungsten heteropoly compounds, B^{III} has the lowest charge and coordination number and the smallest size, which probably defines some distinctive properties of the borotungstate (BW) system.⁴⁻⁷ Thus, in addition to a typical heteropolyacid (HPA) $H_5[BW_{12}O_{40}]$ (BW₁₂), an unusual HPA $H_{21}[B_3W_{39}O_{132}]$ (B_3W_{39}) forms in aqueous BW solutions and can be isolated as a solid. By X-ray crystallography, B_3W_{39} , long accepted to be an isomer of BW_{12} , has recently been found to consist of three equivalent Keggin derivative subunits BW_{13} with C_s symmetry.⁵ 183W NMR spectra largely confirmed this structure of the trimer in solution but revealed a deviation from the previously proposed symmetry that gives rise to chirality of the polyanion.⁶ This conclusion was confirmed by a re-examination of the acidic sodium salt of B_3W_{39} in the solid state, by X-ray structural analysis, and in solution, by ¹⁸³W NMR spectroscopy.⁷ BW₁₂ and B₃W₃₉ are ultimate products of a chain of hydrolytic conversions, beginning in weakly acidic BW solutions (pH > 6) with the formation of $[BW_{11}O_{39}H]^{8-}$ (BW₁₁), which can be precipitated as a potassium salt. Upon solution acidification, BW_{11} is converted into a unique polyanion, $[{BW}_{13}O_{46}H_3]^8$ ⁻ (BW₁₃), evidenced by polarography and

POINTSITY
 POINTSY CONTROLL C ultracentrifugation, which transforms further to BW_{12} or B_3W_{39} . Recently, new anions, $[H_3BW_{14}O_{48}]^{6-}$ and $[H_6B_2W_{26}O_{90}]$ 12 also derived from BW_{13} , were isolated as salts, and their crystal structures were determined.⁷ Addition of molybdate or organotin moieties acting as linkers to BW solutions results in complex mixed-metal arrangements, including BW_{11} or BW_{13} as fragments.^{8,9} However, the chemistry even of binary BW solutions is not yet completely understood.^{5,7} There are doubts that BW_{11} has the α structure because it does not interconvert directly with α -BW₁₂. Attempts to isolate the key intermediate BW_{13} have failed, as well as attempts to characterize it by ^{183}W NMR in solutions, which usually contain mixtures of several species.⁷ While examining the acidic and catalytic properties of the HPA B_3W_{39} , we used NMR spectroscopy for monitoring its synthesis and identification in solution. $6,10$ In studying speciation of polyoxometalates in solutions, NMR spectroscopy is of unique importance, with ¹⁷O and ¹⁸³W NMR spectra being particularly structurally informative. $11-22$ In this paper, we present novel findings and for the first time report and interpret the individual 183 W and 17 O NMR spectra of BW_{11} and BW_{13} . We have succeeded in obtaining these spectra to a great extent thanks to utilization of the electrochemical method of acidification, which

Published: April 28, 2011 Received: September 29, 2010 allows fine adjustment of the synthesis conditions to be made. The spectra structurally characterize the polyanions and allow their conversions in solution to be followed at a "fingerprint" level. The obtained results clarify the questions concerning the BW system that have been raised by previous studies. It is important for understanding the mechanisms of hydrolytic conversions in borotungstate solutions and the role of the heteroelement in the formation, along with the typical polyanions, of some peculiar structures.

EXPERIMENTAL SECTION

Preparation of K₈[BW₁₁O₃₉H] $\cdot nH_2O$. The salt was synthesized in aqueous solution of $\text{Na}_2\text{WO}_4 \cdot 2\text{H}_2\text{O}$ and H_3BO_3 (W/B ≈ 2.8) as previously described.⁵ Elemental analysis (found/calc) for $K_8[BW_{11}$ - $O_{39}H$] · 13H₂O: K, 8.5/9.6; B, 0.32/0.34; W, 61/63; H₂O, 8/7.5. The analyses were done by atomic absorption spectrophotometry and gravimetry. Because of low solubility of the potassium salt corresponding to $\text{[BW}_{11}] \approx$ 0.01 mol/L, K⁺ was exchanged with Na⁺ by reaction with NaClO4 to increase solubility and achieve higher concentration for NMR measurements. To $K_8[BW_{11}O_{39}H] \cdot 13H_2O(3.2 g, 1 \text{ mmol})$ were added water (10 mL) and NaClO₄ (1.2 g, 9.8 mmol), and the suspension was stirred at room temperature for approximately 20 min. The precipitate of $KClO₄$ and the undissolved residue of $K-BW₁₁$ were removed by filtration. The filtrate contained $\text{[BW}_{11}] \approx 0.08$ mol/L. The solution could be further concentrated to about 0.16 mol/L by evaporation at ∼40 °C. At higher concentrations, K-salt-based precipitates formed since potassium could not be completely removed from solutions.

Preparation of $H_{21}[B_3W_{39}O_{132}] \cdot 64H_2O$. When HPA B_3W_{39} was prepared via a procedure of Tézé et al., $⁵$ the product had composi-</sup> tion $H_{17}Na_4[B_3W_{39}O_{132}]\cdot H_2SO_4\cdot xH_2O^6$ Additional ether extraction and recrystallization afforded the actual heteropolyacid $H_{21}[B_3W_{39}O_{132}] \cdot nH_2O$ with a yield of 10–20%.⁶ It did not contain H₂SO₄ (no IR band at \sim 1200 cm⁻¹), and the molar content of Na⁺ was ≤0.1/HPA.

Preparation of BW Solutions. Aqueous BW solutions with $[W] >$ 1 mol/L and W/B \approx 3.7 and 12, prepared from Na₂WO₄ \cdot 2H₂O and H3BO3 (of reagent grade) and distilled water, were decationized and acidified by the electrodialysis method, as described in the literature.²³ Solid Na_2WO_4 •2 H_2O (20 g, 60.6 mmol) was dissolved in 40 mL of water with stirring, and solid H_3BO_3 (1 g, 16.2 mmol) was added. The BW solutions, placed into the anode compartment of an electrodialyzer to conduct the electrochemical substitution of $Na⁺$ by $H⁺$, were acidified to different pH levels in the range 2-6, at \leq 30 °C. Afterward, acidified solutions were boiled for $30-60$ min for equilibration and concentration, with the solution pH increasing to $5.5-7.5$. The final solution volume was 25 mL, which corresponded to $[W] = 2.4$ mol/L or to $[BW_{11-13}] \approx 0.2$ mol/L. The solution kept in a refrigerator overnight gave no precipitates. Acidification by electrodialysis provided minimum content of Na and the absence of foreign anions in solutions, which largely allowed us to avoid precipitation of tungsten at its rather high concentration and to measure the ¹⁷O NMR spectra of borotungstates at natural ¹⁷O content and the corresponding 183 W NMR spectra with good signal/ noise ratio.

For preparing several BW solutions, sodium paratungstate, Na₁₀- $[H_2W_{12}O_{42}]\cdot 27H_2O$ was used instead of $Na_2WO_4\cdot 2H_2O$. The solution composition was monitored by 11 B and 183 W NMR spectroscopy.

Instrumentation and Methods. ${}^{11}B, {}^{17}O,$ and ${}^{183}W$ NMR spectra were measured on an MSL-400 Bruker NMR spectrometer at frequencies of 128.37, 54.27, and 16.67 MHz, with 16, 10, and 50 μ s pulse widths (flip angle \sim 70°) and 1, 0.01, and 5 s interpulse delays, respectively. The ¹¹B and ¹⁸³W NMR measurements were done with a high-resolution multinuclear probe head with 10 mm o.d. (3 mL solution volume) sample tubes. ¹⁷O NMR spectra were measured on a

more sensitive high-power multinuclear probe head, with cylindrical 8 mm o.d. (1.5 mL) horizontal or inclined sample tubes. NMR measurements were carried out with the magnetic field drift compensation of the spectrometer, without ²H lock. Chemical shifts (δ) were determined relative to aqueous solutions of H_3BO_3 and Na_2WO_4 and to H₂O as external references. For ¹⁸³W NMR spectra, saturated aqueous solution of HPA H_4 [SiW₁₂O₄₀] was used as a secondary standard (with δ = -103.65 ppm).

RESULTS AND DISCUSSION

Characterization of BW Polyanions. Of all BW polyanions, only BW_{12} can be unambiguously identified via ^{11}B NMR by a sharp peak at $\delta = -17.4$ ppm, which corresponds to the BO₄ tetrahedron with high symmetry.²⁴ Anions $\dot{\mathbf{B}}_3\mathbf{W}_{39}$, BW₁₁, and BW_{13} give ^{11}B NMR signals in the same range, which are broadened by the quadrupolar effect (Figure S1 in Supporting Information). The $183W$ and $17O$ NMR spectroscopy is more characteristic and was mainly used for detection of these polyanions.

Multinuclear NMR spectroscopy is often the only and the most accurate method of structural characterization of polyoxometalates in solution. Thus, the ¹⁸³W NMR spectrum of highly symmetric anions $\left[\text{XW}_{12}\text{O}_{40} \right]^{n-}$ $\left(\text{X} = \text{P}^{\text{V}}, \text{Si}^{\text{IV}}, \text{B}^{\text{III}}, \ldots \right)$ is a sharp singlet, while lacunary anions $\left[\chi W_{11}O_{39} \right]^{-n-4}$ of C_s symmetry (Figure 1, top) yield spectra with six peaks (of relative intensities \sim 2:2:2:1:2:2), each with rather weak (\sim 7% of the main line) $^{2}J_{\rm W-O-W}$ satellites due to coupling with the neighboring $^{183}{\rm W}$ atoms. Analysis of the $W-W$ connectivities allows different isomers to be distinguished.¹² But obtaining the separate spectrum of BW_{11} turned out to be problematic. A solution, prepared from the K salt of BW_{11} (by exchanging K to Na to increase the salt solubility), instead of the expected six ¹⁸³W NMR peaks gave a complex spectrum of 15 peaks of comparable intensities. As shown further, the solution contained comparable amounts of BW_{11} and BW_{13} and an admixture of $[W_7O_{24}]^{6-}$, and its spectrum could not be used for identification purposes. To obtain these BW species separately, we studied a number of different BW solutions of low acidity. We applied gradual acidification of $Na₂WO₄/H₃BO₃$ solutions at low temperature (<30 °C) with subsequent boiling. For concentrated solutions used in the NMR measurements, acidification by electrodialysis is especially important since it allows one to avoid precipitate formation. The solutions at $pH > 6$ contained different amounts of BW_{11} , BW_{13} , BW_{12} , and $[W_7O_{24}]^{6-}$. Boiling transforms BW_{13} to BW_{12} but also decreases the content of BW_{11} , which sometimes results in a strong signal of BW_{12} (up to 80% of the total intensity). After many attempts, we prepared a solution that, according to the 183 W NMR spectrum, contained ∼15% of all tungsten as BW₁₂, $∼70\%$ as BW₁₁, $∼10\%$ as BW₁₃, and <5% as heptatungstate. This particular spectrum, shown in Figure 1a, was used for identification of the BW_{11} anion. Sharp signals of BW_{12} and $[W_7O_{24}]^{6-}$ do not overlap with the rest of the signals and present no great difficulties for analysis of the spectrum. The obtained set of six signals similar to those of heteropolyanions XW_{11} (X = P^{5+} , Si⁴⁺, Ga³⁺) confirms that it arises from **BW₁₁**. The **BW**₁₁ signals are a little broadened, which is evidently due to the chemical exchange with BW_{13} . In this spectrum the $\frac{2}{3}V_{\text{NO}-\text{OW}}$ distant satellites are clearly observable and can be used for the peak assignments (Figure S2 in Supporting Information). The sharpest peak with two different large couplings, which indicates the absence of the edge-sharing neighbors, is from the pair of

Figure 1. (Top) Polyhedral model of $[BW_{11}O_{39}H]^{8-}$ with attached ${W_2O_7H_3}$ fragment (in the ball-and-stick model: white circles, oxygen; black circles, tungsten; gray circles, protons) and ¹⁸³W NMR spectra of (a) $\left[\text{BW}_{11}\text{O}_{39}\text{H}\right]^8$ (electrodialysis, W/B \approx 4, pH 7), 10 000 scans; (b) $[BW_{13}O_{46}H_3]^8$ (obtained from B_3W_{39} , $W/B = 13$, pH ~6.5), 13 840 scans; (c) Na2WO4/H3BO3 (electrodialysis, pH ∼4.5, W/B ≈ 4), 14 600 scans. Polyanion concentrations \approx 0.2 mol/L; (*) signal of $\left[\text{BW}_{12}\text{O}_{40}\right]^{\text{5}-}$, $(\vee)\left[\text{W}_{7}\text{O}_{24}\right]^{\text{6}-}$, (\times) suggested intermediate complex $BW_{11}W$. Dotted lines show the shift of the signals.

atoms W1,2; the peak that is entirely missing the large couplings is from the pair of atoms W6,7; and the peak having one large coupling coinciding with that of the unique W9 atom is from atoms W10,11. The two remaining peaks having two large couplings are identified from comparing their coupling constants with those of other W atoms as shown in Table 1. The corresponding numbers of unresolved small couplings can be then deduced from the above assignments. The set of large and small couplings thus obtained and the peak assignment correspond to the α -isomer of BW₁₁.¹²

The magnitude of the $^{2}J_{\text{W-O-W}}$ coupling constant depends on the $W-O-W$ bond length and the bridging bond angle. In saturated polyoxoanions, their ranges are \sim 15-34 Hz for the corner-sharing (bond angle ∼150) W atoms and ∼47 Hz for the edge-sharing (~120°) W atoms.¹² In lacunary polyoxoanions, much smaller corner couplings (∼10 Hz) are observed for W atoms around the vacancy because of the expansion of their trans-bridging bonds. Thus, in $[PW_{11}O_{39}]^{7-}$ the corner couplings

Table 1. ¹⁸³W NMR Parameters for BW Polyanions and Peak **Assignments**

		δ , ppm large couplings, Hz corner-edge sharing tungsten labeling ^a	
$BW_{11}O_{39}H^{8-}$			
-109	24.6, 10.5	$2 - 0$	1, 2
-118.8		$0 - 2$	6,7
-125.6	14.8	$1 - 2$	10, 11
-155	15	$2 - 2$	9
-162.1	24.4, 16.5	$2 - 2$	5, 8
-186.9	16.3, 10.5	$2 - 1$	3, 4
$BW_{13}O_{46}H_3^{8-}$			
-135.1	16.4	$1 - 2$	10, 11
-150.9	16.1	$2 - 2$	9
-152.8	23.2, 17.5	$2 - 2$	5, 8
-170.7	12.3	$1 - 2$	6, 7
-178.5	22.8, 14.1, 9	$3 - 0$	1, 2
-184.5	17.4, 14.2	$2 - 1$	3, 4
-190.6	8.7, 12.7	$2 - 0$	12, 13
$BW_{11}O_{39}WO_2^{7-b}$			
$-116, -143, -151, 3, -176.7, -206$ ppm			
$BW_{12}O_{40}^{5-}$			
-132 ppm			
α Corresponds to Figure 1. β Suggested composition.			

for W1,2 are equal to 9.8 and 27.8 Hz.^{11e,g} Similarly, in the ¹⁸³W NMR spectrum of $[BW_{11}O_{39}H]^{8-}$, the corresponding corner couplings are equal to approximately 10.5 and 24.5 Hz (Table 1). Upon filling the vacancy, the normal coupling constants are restored.

 BW_{13} can only be obtained in solution. It predominates at pH \sim 4.5–5 in BW solutions prepared by electrodialysis. But the best way for preparing solutions that contain mainly BW_{13} follows from the scheme of T éze et al. δ of hydrolytic conversions of BW heteropolyanions. NaOH was added to 0.1 M solution of HPA B_3W_{39} (pH \sim 0) until the pH reached 5.5–6. Anions $BW_{12} (\sim 20\%)$, $[W_7O_{24}]^{6-}$, and some other species (∼10%) were also observed. BW_{13} was first discovered by polarography, and its composition was determined via pH-metric titration and ultracentrifugation.⁵ Also, the structures of three crystalline borotungstates (B_3W_{39} , BW_{14} , and B_2W_{26}), containing BW_{13} as a fragment, have been investigated by X-ray crystallography.^{5,7} The fragment, have been investigated by X-ray crystallography.^{5,} proposed structure of $[H_3BW_{13}O_{46}]^{8-}$ anion, based on the above studies, is presented by Leclerc-Laronze et al.⁷ in their Figure 3. Nevertheless, they note that there is a need for more direct structural characterization of BW_{13} , for example, by ^{183}W NMR. Having the individual NMR spectrum of BW_{13} , we checked whether it corresponded to the above model, 7 shown by us schematically in Figure 1. The ¹⁸³W NMR spectrum, containing seven peaks of relative intensities ∼2:1:2:2:2:2:2 (Figure 1 b), confirms the suggestion of BW_{13} having C_s symmetry. In this spectrum, not only the large but also many small coupling satellites are well observed (Figure S3 in Supporting Information). The peak assignments were made on the basis of the number of corner- and edge-sharing neighbors and the equivalence of the large coupling constants (Table 1). In the spectrum, five peaks of equal intensities and one of half-intensity relate to the BW_{11} framework. The

Figure 2. 17 O NMR spectra of the same solutions as in Figure 1 a, b: (a) $[BW_{11}O_{39}H]^8$ ⁻ (pH 7), 240 000 scans; (b) $[BW_{13}O_{46}H_3]$ ⁸⁻ (pH \sim 6.5), 205 000 scans. Polyanion concentrations \approx 0.2 mol/L; (*) signal of BW₁₂O₄₀⁵⁻; (|) signals of W₇O₂₄⁶⁻. Notations A–D correspond to Figure 1.

seventh peak arises from two W atoms of the attached ditungstic oxo group. As compared with BW_{11} , additional corner couplings are observed for W1,2 and W6,7 atoms due to the connectivity with W12,13 atoms from the ${\rm [W_2O_7]}^{2-}$ group. In agreement with the observed splittings, we assigned the signal $at -190$ ppm to the latter. Small corner coupling values (about 9 and 12 Hz) between W atoms of the BW_{11} framework and ${H_3W_2O_7}$ are due to longer $O_B-W12,13$ bonds, having terminal O_A atoms in trans position, and consequently longer total bridging bonds (Figure 1).

According to the data of Tézé et al.,⁵ the attachment of $[W_2O_7]^{\frac{2}{}}$ to BW₁₁ requires its joining by three protons, $[H_3W_2O_7]^+$, which corresponds to the formula of $[BW_{13}^-]$ $O_{46}H_3$ ⁸. The ${H_3W_2O_7}$ group is actually asymmetric, and it would be observed by two separate ¹⁸³W signals, like similar groups in $B_3W_{39}^{6,7}$ if there was no fast proton exchange. As a result of the exchange, these signals coalesce to a single one that is

only a little broader than the rest of the signals.
¹⁷O NMR spectroscopy provides important information on polyoxoanion structures.^{13–21} Like anions XW_{12} , anions XW_{11} are characterized by a typical ¹⁷O NMR spectrum determined by the C_s symmetry of the anion. It contains a group of four signals from seven $O=$ W terminal bonds and four signals from eight $O₂W$ cis-dioxo terminal bonds, a group of 12 signals from 20 WOW bridges of different types, and a signal from $BO₄$ tetrahedron, in the corresponding δ ranges.¹⁴ Within the groups, the signals significantly overlap. The observed $\frac{17}{2}$ O NMR spectrum of BW_{11} corresponds to the described type by the set of the signals (Figure 2a, Table 2). The signal from two equivalent cis-dioxo terminal O atoms is shifted to lower frequency (δ = 493 ppm). This indicates the lengthening of the corresponding $O=W$

bonds caused by their protonation, which agrees with previously found composition $\left[\text{BW}_{11}\text{O}_{39}\text{H}\right]^{8-5}$.

According to the 183W NMR spectrum (Figure 1b), the solution of BW_{13} contains among admixtures a species discussed further as an "intermediate complex". Its content is $7-10$ times lower than that of BW_{13} , and accordingly its ^{17}O NMR spectrum is much weaker and is mostly covered with the groups of stronger signals of BW_{13} (Figure 2 b), increasing their measured intensity by $10-15%$. A weak signal at 167 ppm indicates the impurity SO_4^2 ⁻ (in a trace amount) in BW₁₃, introduced from B₃W₃₉ that had been prepared with H_2SO_4 . Assignment of the signals in the spectrum of BW_{13} follows from intensity considerations and consistency with the composition (Table 2, Figure S4 in Supporting Information), and it is also confirmed by the similarity with spectra of complex polyanions $XW_{11}M$.¹⁴ The observed changes as compared to the spectrum of parent BW_{11} indicate filling the vacancy: the group of signals of terminal O atoms narrows and shifts to high frequency due to the shortening of the $O=$ W bonds, while two overlapping signals of four *cis-dioxo* terminal O_B atoms shift to lower frequencies, which suggests formation of four approximately equivalent $W(n) - O_B - W(m)$ bonds between $BW_{11} (n = 1, 2, 6, 7)$ and $\{W_2O_7H_3\} (m = 12, 13)$ (Figures 1 and 2b). The group of signals of bridging O atoms also becomes narrower upon filling the vacancy, due to the peak shifts to the group center. The intermediate position of signal B between the δ ranges of terminal and bridging O atoms indicates asymmetry of the formed bridges with shorter distance $O_B-W(1,2,6,7)$ (<1.85 Å) as compared with a typical length of ${\sim}1.9$ Å, 25 and accordingly longer bonds O_B−W12,13 having terminal $O_A=W$ bonds in trans position. Signal A can be assigned to four cis-dioxo terminal O atoms of $\{W_2O_7H_3\}$ on the basis of the ¹⁷O NMR chemical shift scale for polyoxometalates (Mo, W) and the relative peak intensities. $15-20$ The asymmetry is an inherent characteristics of the $\{W_2O_7H_3\}$ fragment.⁵⁻⁷ But the asymmetric sequence $O= W12-O-$ (H)=W13-O(H₂) manifests itself in the ¹⁷O and ¹⁸³W NMR spectra as a symmetric one, $HO_C-W12-OH-W13-O_cH$ (Figure 1), which is due to fast proton exchange in aqueous solutions.²² According to the averaged $HO-W$ bond length $(\sim 1.9 \text{ Å})$, the signal of these two monoprotonated terminal O atoms falls into the range of $W-O-W$ bridges. The signal of atom O_D in bridge {W12 $-O_DH-W13$ } is expected in the range of 3-fold bridging O atoms. Just in this range we observe a new signal (D) of the appropriate intensity, which can be tentatively assigned to atom $\overline{\mathrm{O}_\mathrm{D}}$. As a whole, the $^{17}\mathrm{O}$ NMR spectrum reflects with full details the oxygen framework of $\left[\text{BW}_{13}\text{O}_{46}\text{H}_{3}\right]^{\text{8-}}$ and, together with the seven-line ¹⁸³W spectrum, confirms both its previously suggested structure and composition.⁵ Furthermore, by the line widths, the ¹⁷O NMR spectra of BW_{11} and BW_{13} correspond to the monomeric forms of these polyanions: dimerization results in the significant line broadening.

Conversions in Solution. We used NMR spectroscopy for monitoring the syntheses and conversions of BW polyanions (Figure 3 and Figure S1 in Supporting Information). In the ¹⁸³W NMR spectra of solutions containing both BW_{11} and BW_{13} , the signals are broadened compared with their individual spectra. More broadened are the signals of atoms W1,2 and W6,7, whose positions in the two spectra differ most of all. This indicates a chemical exchange between the above species, slow-to-intermediate on the NMR time scale.

Solutions of the Na salt of BW₁₁ (pH ~ 7) formed by treatment of $K_8[BW_{11}O_{39}H]$ with NaClO₄ contain a mixture

 a Number of corresponding O atoms, evaluated from the approximate peak intensities, is given in parentheses. b Notations are as in Figures 1 and 2b.
' Tentative assignment. d Reference 6. * Indicates the signal

Figure 3. 183 W NMR spectra of solutions obtained by exchanging K to Na in $K_8[BW_{11}O_{39}H]$: (a) as prepared, total BW polyanion concentration $(C_{BW}) \sim 0.08$ mol/L, pH 7, number of scans NS = 16800; (b) concentrated at 40 °C to ~0.16 mol/L, pH 7.5, NS = 1300; (c) solution acidified with HCl to pH 6, $C_{BW} \sim 0.16$ mol/L, NS = 680; (d) solution acidified with HCl to pH 5, C_{BW} ∼ 0.08 mol/L, NS = 14 300. Solutions contain (a, b) BW_{11} , BW_{13} , and $[W_7O_{24}]^{6-}$ or (c, d) BW_{13} and " $BW_{11}W''$ (\times).

of BW_{11} , BW_{13} , and $[W_7O_{24}]^{6-}$ (Figure 3a, b). Since these solutions do not contain admixture of BW_{12} , they were used for studying the conversion of BW_{13} to BW_{12} during solution acidification. The set of corresponding ¹⁸³W NMR spectra is shown in Figure 3. Upon acidification with HCl to pH \sim 6, BW₁₁ disappears completely, and five new weak ¹⁸³W signals of similar intensities appear. With increasing acidity, the signals of BW_{13} shift to higher frequencies and broaden, especially those of atoms W12,13 and then of atoms W1,2 and W6,7 (Figure 1 c). This indicates further protonation of BW_{13} and proton exchange processes. At pH \sim 5 the intensities of the two sets of peaks (7 and 5) become comparable. At pH \sim 4, the BW₁₂ peak appears in the spectrum and gradually increases with time and further acidification. Thus, BW_{13} is converted to BW_{12} through an intermediate complex. Derived from $\left[\text{BW}_{11}\text{O}_{39}\text{W}_2\text{O}_7\text{H}_3\right]^8$, with its six pairs of equivalent W atoms and corresponding six peaks of equal intensities (and one of half intensity), the intermediate complex has a spectrum of five peaks of equal intensities just as in the $[BW_{11}O_{39}]^{9-}$ framework (and one or two signals of approximately half intensity). The latter is consistent with the presence of a monomeric instead of the dimeric W oxocation in the BW_{11} lacuna, but in contrast to the subsequently forming $\left[\text{BW}_{12}\text{O}_{40}\right]^{5-} \left(\equiv \left[\text{BW}_{11}\text{O}_{39}\text{WO}\right]^{5-}\right)$ the 12th W atom is still incompletely incorporated into the polyanion, likely due to an extra O atom linked to it. Most likely, $[\text{H}_3 \text{W}_2 \text{O}_7]^+$ in BW_{13} is at first replaced by $[\text{WO}_2]^2^+$ with formation of a complex $[BW_{11}O_{39}WO_2]^{7-}$ $(BW_{11}W)$, according to the reaction

$$
[BW_{11}O_{39}W_2O_7H_3]^{8-} + 0.5H^+ \rightarrow [BW_{11}O_{39}WO_2]^{7-} + [H_{1.5}WO_4]^{0.5-} + H_2O
$$
 (1)

where $\left[\rm H_{1.5}WO_4\right]^{0.5-}$ signifies free tungsten, which further condensates to meta- (or para-) tungstate. For $BW_{11}W$, except for five 183W NMR peaks of equal intensity, one or even two peaks of half intensity should be observed. Detection of the two latter peaks might be problematic because of their low intensity and possible overlap with other peaks. However, in the spectrum (Figure 1 c) there are unidentified signals of the appropriate intensity, which might be related to these W atoms. The shift of the peaks of suggested $BW_{11}W$ with acidity indicates that it is also subject to protonation, which eventually results in removal of the extra O atom and complete conversion into BW_{12} :

$$
\left[BW_{11}O_{39}WO_2 \right]^{7-} + 2H^+ \rightarrow \left[BW_{12}O_{40} \right]^{5-} + H_2O \hspace{0.5cm}(2)
$$

The two-stage conversion of BW_{13} to BW_{12} , observed by the ^{183}W spectra, is evidently rather slow, like many other interconversions of polytungstates. Under conditions of slow electrochemical acidification to pH_0 2-3.5 and subsequent boiling, an 80% yield of BW_{12} was achieved. Under strong and fast acidification, condensation into B_3W_{39} appears to be more favorable.⁵

 B_3W_{39} is unstable in concentrated solutions of the HPA $H_{21}[B_3W_{39}O_{132}]$ (≥0.05 M, pH $∼$ 0). With aging for several days, precipitates of tungstic acid appear, and the NMR signal of $H_5[BW_{12}O_{40}]$ is detected, evidently corresponding to the reaction

$$
H_{15}[B_3W_{39}O_{132}H_6] \rightarrow 3H_5[BW_{12}O_{40}] + 3H_2O\cdot WO_3
$$
 (3)

In essence, this reaction is similar to summary conversion, eqs 1 and 2, leading to the ejection of extra tungsten and to formation of BW_{12} . This conversion, delayed because of faster formation of B_3W_{39} at strong acidity, is nevertheless completed by decomposition of the latter to the same ingredients, which is accelerated at higher temperatures. Crystalline $H_{21}[B_3W_{39}O_{132}] \cdot nH_2O$, stored for several months, also gave precipitates on dissolving. The acidic sodium salt $H_{17}Na_4[B_3W_{39}O_{132}] \cdot H_2SO_4 \cdot$ xH_2O was more stable.⁶ Upon reaction with NaOH, B_3W_{39} decomposes into BW_{13} , which is converted further to BW_{12} or BW_{11} , depending on the acidity.

Being more stable than B_3W_{39} in strongly acidic solutions $(\text{pH} \sim 0)$, $[\text{BW}_{12}\text{O}_{40}]^{5-}$, formed at pH< 5, shows rather high stability to alkaline hydrolysis (pH \leq 7.5 at [BW₁₂] \geq 0.1 M) as compared with $[PW_{12}O_{40}]^{3-1}(pH \le 1.5)$ and $[SiW_{12}O_{40}]^{4-1}$ $(pH \le 4)$, which is explained by its higher anionic charge.^{14,23,26} Similarly, the stability ranges of the corresponding lacunary polyanions shift to higher pH with increase in their charges: \sim 4–7 for $[PW_{11}O_{39}]^{7-}$ and ∼5–8 for $[SiW_{11}O_{39}]^{8-14,27,28}$ $[BW_{11}O_{39}H]^{8-}$ exists at pH 6-8 and only in the protonated state. Contrary to the PW and SiW systems, polyanions of the 1:9 series (" BW_9 ") are not formed at all.⁵

On the basis of the observation that BW_{11} , in contrast to PW_{11} , did not convert directly to the Keggin polyanion $(\alpha$ -BW₁₂) upon reaction with WO₄²⁻, it was suggested that BW_{11} is not the α -isomer.⁵ However, as shown above, the ¹⁸³W NMR spectrum observed for BW_{11} is typical of the α -XW₁₁ structure. It should be noted also that the incorporation of tungsten into PW_{11} to form PW_{12} (= $PW_{11} \cdot WO^{4+}$) is not a direct reaction either: it proceeds in the range of pH $\approx 1.5 - 3.5$ through intermediate complexes of PW_{11} with oxocations $WO_2^{\Sigma^+}$, giving rise to a wide variety of, mainly unidentified, PW species observed by ^{31}P NMR spectroscopy.¹⁴ PW₁₂ is produced with almost 100% yield directly from $\left[\widetilde{W}_{7}O_{24}\right]^{\rm 6-1}$ and H_3PO_4 ([W] = 1 M, W/P \approx 12) in the course of electrodialysis from pH 6 to 2, while in the mixture $PW_{11} + W$ under the same conditions only \leq 75% of PW₁₁ is converted into PW₁₂, the rest being converted into $[P_2W_{21}O_{71}(H_2O)_3]^{6-.29}$ In solution, free tungsten occurs in the polymerized forms, mainly as stable metatungstate anion, while the required \rm{WO}^{4+} is quite unlikely in solution. It can form only after joining to PW_{11} of at least dioxocation WO_2^{2+} that does not exist as such either but can arise for a short time during different conversions of tungstate polyanions. Like other Keggin polyanions, in which the stoichiometry of the WO framework corresponds to WO_3 , BW_{12} requires for its formation rather high acidity, while BW_{11} exists at pH > 6. That is why BW_{11} cannot convert directly into BW_{12} and forms instead intermediate complex $BW_{11}W_2$, which accommodates a highly charged polyanion to increasing acidity. This occurs through condensation on BW_{11} of two WO_4^{2-} ions just in the pH range of their condensation into $[W_7O_{24}]^{6-.5,7}$ Moderate further acidification results in a stepwise conversion $BW_{11}W_2 \rightarrow$ $BW_{11}W \rightarrow BW_{12}$, while strong acidification results in condensation of BW11 and intermediate polyanions into various peculiar structures, especially in the presence of third components.

CONCLUSIONS

The results of our 17 O and 183 W NMR studies confirm the existence in solution of monomeric polyanions $\left[\text{BW}_{13}\text{O}_{46}\text{H}_{3}\right]^8$ and α -[BW₁₁O₃₉H]⁸⁻. In addition, an intermediate complex was observed during conversion of BW_{13} to BW_{12} . A composition of $[BW_{11}O_{39} \cdot WO_2]^{7-}$ for this complex and a likely stepwise mechanism for the conversion $BW_{11} \rightarrow BW_{12}$ have been suggested. In our opinion, B^{III} as the central atom gives rise to the peculiarities of the BW interaction, mainly owing to the higher negative charge of the typical polyanions BW_{12} and BW_{11} , which shifts their stability ranges to lower acidity. Accordingly, the occurrence of the unprotonated BW_{11} and then BW_9 polyanions could be expected only at pH ≥ ∼9, which lies beyond the range of the tungstate polycondensation and, consequently, is not possible. Thus, BW_{11} turns out to be the only lacunary derivative of BW_{12} , and as a result BW complexes produced by acidification of weakly acidic or alkaline solutions, in contrast to PW system, are not so numerous and have a tungsten to central atom ratio ≥ 11 .

'ASSOCIATED CONTENT

S Supporting Information. ${}^{11}B$, ${}^{183}W$, and ${}^{17}O$ NMR spectra of different borotungstate solutions. This material is available free of charge via the Internet at http://pubs.acs.org.

NEAUTHOR INFORMATION

Corresponding Author

*Tel +7 3833 269565; fax +7 3833 30-95-73; e-mail rimax@ catalysis.ru.

REFERENCES

(1) (a) Souchay, P. Ions mineraux condenses; P. Masson: Paris, 1969. (b) Nikitina, E. A.Gheteropolisoedinenia (Heteropolycompounds); Goskhimizdat: Moscow, 1962.

(2) Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer: Berlin, 1983.

(3) (a) Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity; Pope, M. T., Müller, A., Eds.; Kluwer: Dordrecht, The Netherlands, 1993. (b) Chem. Rev. 1998, 98, special issue on POMs. (c) Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications; Pope, M. T., Müller, A., Eds.; Kluwer: Dordrecht, The Netherlands, 2001. (d) Kozhevnikov, I. V. Catalysis by Polyoxometalates; Wiley: Chichester, U.K., 2002. (e) Hill, C. L. . In Comprehensive Coordination Chemistry II; Wedd, A. G., Ed.; Elsevier Science: New York, 2004; Vol. 4, pp 679–759. (f) Kholdeeva, O. A.; Maksimovskaya, R. I. J. Mol. Catal. 2007, 262, 7–24.

(4) Hervé, G.; Tézé, A. C. R. Acad. Sci. 1978, 278, 1417–1420.

(5) Tézé, A.; Michelon, M; Hervé, G. Inorg. Chem. 1997, 36, 505–509.

(6) Maksimov, G. M.; Maksimovskaya, R. I.; Litvak, G. S. Russ. J. Inorg. Chem. 2005, 50, 1062–1065.

(7) Leclerc-Laronze, N.; Marrot, J.; Hervé, G.; Thouvenot, R.; Cadot, E. Chem.—Eur. J. 2007, 13, 7234–7245.

(8) Reinoso, S.; Dickman, M. H.; Matei, M. F.; Kortz, U. Inorg. Chem. 2007, 46, 4383–4385.

(9) Leclerc-Laronze, N.; Marrot, J.; Thouvenot, R.; Cadot, E. Angew. Chem., Int. Ed. 2009, 48, 4986–4989.

(10) Timofeeva, M. N.; Maksimov, G. M.; Likholobov, V. A. Kinet. Catal. 2001, 42, 30–34.

(11) (a) Acerete, R.; Hammer, C. F.; Baker, L. C. W. J. Am. Chem. Soc. 1979, 101, 267–269. (b) Gansow, O.; Ho, R. K.; Klemperer, W. G. J. Organomet. Chem. 1980, 187, 27. (c) Lefebvre, J.; Chauveau, F.; Doppelt, P.; Brevard, C. J. J. Am. Chem. Soc. 1981, 103, 4589–4591. (d) Acerete, F.; Hammer, Ch. F.; Baker, L. C. W. J. Am. Chem. Soc. 1982, 104, 5384–5390. (e) Brevard, C.; Schimpf, R.; Tourne, G.; Tourne, C. M. J. Am. Chem. Soc. 1983, 105, 7059–7063. (f) Knoth, W. H.; Domaille, P. J.; Roe, D. C. Inorg. Chem. 1983, 22, 198–201. (g) Kazansky, L. P. Chem. Phys. Lett. 1994, 223, 289.

(12) Sveshnikov, N. N.; Pope, M. T. Inorg. Chem. 2000, 39, 591–594.

(13) (a) Klemperer, W. G. Angew. Chem., Int. Ed. Engl. 1978,

17, 246–254.(b) Klemperer, W. G. . In The Multinuclear Approach to NMR Spectroscopy; Lambert, J. B., Riddell, F. G., Eds.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1983; pp 245-260.

(14) (a) Maksimovskaya, R. I.; Fedotov, M. A.; Maksimov, G. M. Russ. J. Inorg. Chem. 1985, 30, 1376–1379. (b) Maksimovskaya, R. I. Russ. J. Inorg. Chem. 1998, 43, 1825–1837.

(15) Filowitz, M.; Klemperer, W. G.; Messerle, L.; Shum, W. J. Am. Chem. Soc. 1976, 98, 2345–2346.

(16) Filowitz, M.; Ho, R. K. C.; Klemperer, W. G.; Shum, W. Inorg. Chem. 1979, 18, 93–103.

(17) Maksimovskaya, R. I.; Fedotov, M. A. Zh. Strukt. Khim. 1981, 22, 160–162.

(18) Fedotov, M. A.; Kazansky, L. P.; Spitsyn, V. I. Dokl. Akad. Nauk SSSR 1983, 272, 1179–1183.

(19) Kazansky, L. P.; Chaquin, P.; Fournier, M.; Herve, G. Polyhedron 1998, 17, 4353–4364.

(20) Fedotov, M. A.; Maksimovskaya, R. I. Zh. Strukt. Khim. 2006, 47, 961–984.

(21) Maksimovskaya, R. I.; Burtseva, K. G. Polyhedron 1985, 4, 1559–1562.

(22) Day, V. W.; Klemperer, W. G.; Maltbie, D. J. J. Am. Chem. Soc. 1987, 109, 2991–3002.

(23) Maksimov, G. M.; Maksimovskaya, R. I.; Kozhevnikov, I. V. Russ. J. Inorg. Chem. 1994, 39, 595–600.

(24) Coddington, J. M.; Taylor, M. J. J. Coord. Chem. 1989, 20, 27–38.

(25) Brown, G. M.; Noe-Spirlet, M. R.; Busing, W. R.; Levy, H. A. Acta Crystallogr. 1977, B33, 1038–1046.

(26) Kepert, D. L.; Kyle, J. H. J. Chem. Soc., Dalton Trans. 1978, 1781–1784.

(27) (a) Canny, J.; Tézé, A.; Thouvenot, R; Hervé, G. Inorg. Chem. 1986, 25, 2114-2119. (b) Hervé, G.; Tézé, A. Inorg. Chem. 1977, 16, 2115–2117.

(28) Smith, B. J.; Patrick, V. A. Aust. J. Chem. 2002, 281–286.

(29) Kulikova, O. M.; Maksimovskaya, R. I.; Kulikov, S. M.; Kozhevnikov Bull. Russ. Acad. Sci., Div. Chem. Sci. 1991, 40, 1527–1533.